Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами
Для тройных систем Cu2+-H3PMG-HVal нами были получены значения констант устойчивости разнолигандных комплексов Cu(PMG)Val2- (lgβ1110 = 19.81(4)) и Cu(HPMG)Val- (lgβ1111 = 26.02(6)) и рассчитаны диаграммы распределения иона металла (рисунок 2). Образованию комплексов Cu(H2PMG)(HVal)+, Cu(HPMG)(HVal), Cu(HPMG)Val-, Cu(PMG)Val2-, по всей видимости, препятствует большая устойчивость при низких значениях рН бис-комплексов с формами HPMG2- и H2PMG-, способными образовывать хелатные комплексы.
Большую устойчивость комплекса Cu(PMG)Val2 по сравнению с Cu(PMG) можно объяснить вхождением в координационную сферу иона металла меньшего по объему по сравнению с PMG3- хелатообразующего валинат-иона, также занимающего два места в экваториальной плоскости комплекса. По сравнению с Cu(Val)2 тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.
Рисунок. 2. Диаграммы распределения металла для растворов с соотношениями сCu: сPMG : сVal = 1:1:1 (а) и 1:2:2 (б) (сCu=0.0015 моль/л, 0.1 М KCl).
В электронных спектрах в системе Cu2+-H3PMG при увеличении рН и соотношения сPMG: сCu возрастает оптическая плотность, максимум полосы поглощения смещается в длинноволновую область не превышая значения 14500 см-1, что означает присутствие не более одного атома азота в экваториальной плоскости комплекса, то есть в комплексе Cu(PMG) одна из донорных групп не принимает участия в связывании и один из лигандов координирован бидентатно. Об этом также свидетельствует его константа устойчивости, которая намного ниже ожидаемой при одинаковой координации обоих лигандов.
Добавление в систему валина смещает сигнал в длинноволновую область и при рН > 8 максимум полосы поглощения имеет значение свыше 14500 см-1, что подтверждает нахождение в экваториальной плоскости комплекса двух донорных атомов азота.
Значения констант устойчивости, полученные в ходе компьютерной обработки оптических спектров, соответствуют данным рН метрического титрования, что свидетельствует о корректности выбранной схемы равновесий. Нами предложены следующие способы координации в разнолигандных комплексах:
Cu(HPMG)Val- Cu(PMG)Val2–
В разделе 3.2 описано исследование строения комплексов Cu(II) с 2--4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (I) и 2--4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (II) методами ЭПР и электронной спектроскопии.
По данным ИК спектров установлено, что в реакции комплексообразования участвует именно азометиновая форма лигандов. Данные ЭПР (наличие дополнительной сверхтонкой структуры от двух ядер азота) позволяют предположить следующее строение координационного центра:
(Х = H (I); NO2 (II)).
Разложение электронного спектра на Гауссовы составляющие с помощью программы ГАЭС позволяет выделить четыре компоненты, параметры которых приведены в таблице 2, соответствующие d-d переходам.
Приравнивая, полученные в рамках МУП, выражения для энергии переходов между d-орбиталями со значениями ν0 из таблицы 2, получаем системы уравнений для четырех возможных вариантов расположения энергетических уровней:
1) ;
2) ;
3) ;
4) .
Таблица 2.
Параметры полос поглощения отдельных электронных переходов в комплексах меди(II) c соединениями I и II.
№ перехода | e, дм3∙моль-1∙см-1 | ν0, см-1 | δ½, см-1 | f, 10-4 |
I | ||||
1 | 20 | 14047 | 1910 | 10.57 |
2 | 39 | 15422 | 1078 | 11.63 |
3 | 29 | 17111 | 1000 | 8.023 |
4 | 27 | 19033 | 1133 | 8.463 |
II | ||||
1 | 12 | 14122 | 2100 | 6.972 |
2 | 39 | 15820 | 1284 | 13.85 |
3 | 23 | 17928 | 1036 | 6.592 |
4 | 18 | 19581 | 1022 | 5.089 |
Пищевое поведение земноводных Пищевое поведение земноводных ...
Брюхоногие моллюски прудовики, лужанки, битиния, катушки Брюхоногие моллюски: прудовики, лужанки, битиния, катушки ...
Орхидеи Kegeliella kupperi Орхидеи Kegeliella kupperi Этот эпифитный родственник Stanhopea заслуживает более широкого распространения. Самое необыкновенное в коллекционировании орхидей, по видимому, бесконечное ...